Feasibility of balloon dilatation in endoscopic sinus surgery simulator

Aldo Stamm, MD, PhD, João Flavio Nogueira, MD, and Macos Lyra, MD, São Paulo, Brazil

OBJECTIVE: Assess the feasibility of the use of a life-size model for ESS to perform balloon catheter dilatation of the paranasal sinus ostia.

STUDY DESIGN AND SETTING: Four validated sinus models were enrolled in this study. One experienced endoscopic surgeon performed all the dilations of the paranasal sinus ostia. We used the Relieva Sinus Balloon Catheter System (Acclarent, Inc, Menlo Park, CA), and its described technique for fluoroscopic guided sinuplasty.

RESULTS: Twenty-four ostia were available. All sinuses were successfully catheterized and dilated. The total fluoroscopic time was 18 minutes and 8 seconds (mean, 45.3 seconds per sinus) and the total procedure time was 50 minutes and 56 seconds (mean, 2 minutes and 7 seconds per sinus).

CONCLUSION: It was feasible to perform a successful dilatation of the 24 available sinus ostia of the models: 8 maxillary, frontal and sphenoid. No major technical difficulties were encountered.

SIGNIFICANCE: This model could help surgeons in the training of sinus ostia balloon dilatation.

No sponsorships or competing interests have been disclosed for this article.
We purchased and used the Relieva Sinus Balloon Catheter System (Acclarent, Inc, Menlo Park, CA) and its described technique for fluoroscopic guided balloon dilatation. Standard 0-degree and 45-degree, 4 mm endoscopes were used. Sinus guide catheters, flexible sinus guidewires, sinus balloons catheters, and a sinus balloon inflation device with a manometer were used (Fig 2). The sinus balloon inflation device and the sinus catheters were prepared following the manufacturer’s instructions. A saline solution was used for injection into the balloon.

We used the standard sinus balloon with a size of 5 mm. The same sinus balloon was used to dilate multiple times. The manufacturer provided detailed explanation on how to re-prepare the sinus balloon for adequate functioning. We used C-arm fluoroscopy guidance just to confirm the successful positioning of the guidewire into the sinus, not the balloon.

We used the standard sinus balloon with a size of 5 mm. The same sinus balloon was used to dilate multiple times. The manufacturer provided detailed explanation on how to re-prepare the sinus balloon for adequate functioning. We used C-arm fluoroscopy guidance just to confirm the successful positioning of the guidewire into the sinus, not the balloon.

Four life-size sinus models S.I.M.O.N.T. were enrolled in this study. For this study, because we wanted to determine the feasibility of balloon dilatation in this model, one experienced sinus surgeon performed all the dilatations of the paranasal sinus ostia.

RESULTS

Twenty-four ostia were available: eight maxillary, eight frontal, and eight sphenoid. All 24 sinuses were successfully catheterized and dilated. The balloon catheters were inflated to 10 atm. The inflation time was 10 seconds and the final pressure was maintained for 5 seconds. The total fluoroscopic time was 18 minutes and 8 seconds (mean, 45.3 seconds per sinus) and the total procedure time was 50 minutes and 56 seconds (mean, 2 minutes and 7 seconds per sinus).

DISCUSSION

Several important observations were made during the investigation. First, the easiest sinus to cannulate was the sphenoid sinus. These data are also present in studies of feasibility in cadavers and real patients.4-6

The sphenoid sinus was cannulated with the 0-degree 4 mm endoscope, by placing the 0-degree sphenoid guiding catheter, under endoscopy guidance, into the sphenoid recess (Fig 3). The balloon was inflated and deflated. Endoscopic examination after the procedure showed an ostium that resembled the shape of the balloon.

The next easiest sinus to cannulate was the frontal. For this sinus we used a 45-degree, 4 mm endoscope. After the positioning of the 70-degree frontal guiding catheter into the middle meatus, the guidewire was advanced in the direction of the frontal sinus outflow tract. Correct positioning of the guidewire under fluoroscopy (Fig 4) resulted in prompt positioning of the balloon into the frontal recess. Balloon dilatation was performed and endoscopic examination showed an enlarged ostium (Fig 5).

The trickiest sinus to cannulate was the maxillary, mostly because of its natural ostium position behind the uncinate process. The uncinate was softly displaced with the 90-degree maxillary guiding catheter (Fig 6). The natural os-
tium was catheterized using the 45-degree, 4 mm endoscope. Fluoroscopy was performed to confirm the correct positioning of the wire catheter. Balloon dilatation was performed and endoscopic examination showed an enlarged ostium.

The technical difficulties were the limited space, similar to the life size anatomy, and the sticky mucosa present on the model. However, these problems did not jeopardize the successful dilatation of the sinus ostia.

The models were built based on a normal paranasal sinus computer tomography and validated for endoscopic nasal dissection. They were made with special bone-like resin and Neoderma, a special material that simulates the consistency of the mucosa and soft tissues. The S.I.M.O.N.T. had all paranasal sinuses with ostia and other structures, such as nasal septum, inferior, middle, and superior turbinates, uncinate process, ethmoid bulla, sphenopalatine artery, and its branches, orbital content, and lamina papyracea.

Figure 3 Endoscopic placement of the 0-degree sphenoid guiding catheter guidance into the left sphenoethmoid recess: 1, superior turbinate; 2, middle turbinate; 3, 0-degree sphenoid guiding catheter; 4, nasal septum.

Figure 4 Fluoroscopic view of the placement of guidewire into the left frontal sinus: 1, left frontal sinus; 2, left orbit; 3, 70-degree frontal guiding catheter; 4, guidewire.

Figure 5 Endoscopic view with a 45-degree endoscope of the steps of a balloon dilatation performed at the left frontal sinus ostia: 1, left middle turbinate; 2, 70-degree frontal guiding catheter; 3, balloon dilated; 4, endoscopic examination shows an enlarged left frontal sinus ostium.

Figure 6 Endoscopic view with a 45-degree endoscope of the positioning of the 90-degree maxillary guiding catheter: 1, right middle turbinate; 2, maxillary guiding catheter; 3, uncinate process; 4, ethmoid bulla.
The region of the ostia was made with soft breakable adjacencies. This facilitated the dilatation and enlargement of the ostia. The model did not have any maxillary accessory ostia, but it is also important to state that different anatomic models can be made, putting diseases into the sinus, and creating environments in accord with the surgeon’s training necessity.

The surgical materials, such as endoscopes, instruments, and tools for balloon dilatation were the same used in real procedures so the skills used were similar to the ones used in real procedures.

With new techniques and technologies, there is always a learning curve and training is an important consideration. Several studies showed that just like in ESS, cadaver training helped prepare the surgeon to handle the new balloon catheter devices in surgery.6

Most of the otolaryngologists are very experienced with endoscopes, microscopes, and an array of rigid instruments such as forceps, knives, and scissors. However, manipulating catheters and working from a fluoroscopy monitor is a different matter for most otolaryngologists, and cadaver training is very helpful in preparing one for actual patient care with the new devices.6

We also agree with the training experience, but, in the mean time, we are concerned with the crescent difficulties to get dissection specimens. This problem can be solved with the use of real model simulators, which bring similar life size anatomy, color, and consistency of tissues, not having inherent biohazard risks, as well as conservations issues.7,9,10

In the future, we intend to perform more studies of simulation importance and its effect on education of otolaryngologists in balloon catheterization, outcomes, and safety of procedures.

CONCLUSION

The role of the balloon catheter devices in otolaryngology is promising and training will be paramount for the safety and feasibility of this new technology. Human dissectible cadavers are hard to get and have potential risks of dealing with biological material. It was feasible to perform a successful dilatation of the 24 available sinus ostia in the S.I.M.O.N.T.: 8 maxillary, frontal and sphenoid. No major technical difficulties were encountered.

AUTHOR INFORMATION

From the Sao Paulo ENT Center, Hospital Professor Edmundo Vasconcelos, Sao Paulo, Brazil.

Corresponding author: João Flávio Nogueira Jr, MD, Sao Paulo ENT Center, Hospital Professor Edmundo Vasconcelos, Rua Martiniano de Carvalho, 1049 São Paulo, Brazil.

E-mail address: joaoflavioce@hotmail.com.

AUTHOR CONTRIBUTIONS

Aldo Stamm, writer, study design; João Flavio Nogueira, writer, study design; Macos Lyra, study design.

FINANCIAL DISCLOSURE

None.

REFERENCES